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SUMMARY 

The discretization of the incompressible Navier-Stokes equation on boundary-fitted curvilinear grids is 
considered. The discretization is based on a staggered grid arrangement and the Navier-Stokes equations in 
tensor formulation including Christoffel symbols. It is shown that discretization accuracy is much enhanced 
by choosing the velocity variables in a special way. The time-dependent equations are solved by a pressure- 
correction method in combination with a GMRES method. Special attention is paid to the discretization of 
several types of boundary conditions. It is shown that fairly non-smooth grids may be used using our 
approach. 
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1. INTRODUCTION 

The numerical solution of the incompressible Navier-Stokes equations in complex geometries 
has long been a difficult problem for finite difference and finite volume techniques. During the last 
years, however, considerable attention has been focused on the discretization and solution of 
these equations in boundary-fitted co-ordinates.' -' Finite volume and finite difference discretiz- 
ation methods for the incompressible Navier-Stokes equations fall into two main classes: those 
using staggered and those using collocated (non-staggered) grids. Some publications in which 
staggered grids are used with general co-ordinates are References 1-5,s and 10. A staggered grid 
scheme using triangular volumes rather than quadrilaterals is described in Reference 11. Colloc- 
ated grids with general co-ordinates are used in References 6, 7, 9 and 12-20. Furthermore, 
different sets of velocity unknowns may be chosen. The most commonly used velocity unknowns 
are Cartesian unknowns, contravariant and covariant unknowns. Rodi et a1.4 give an excellent 
review over the various possibilities. 

It is our final aim to solve the incompressible Reynolds-averaged time-dependent 
Navier-Stokes equations with turbulence modelling in complex 3D geometries. In this paper we 
restrict ourselves to 2D laminar flow as a first step. However, the methods described here will be 
constructed such that the extension to turbulent 3D flow is straightforward. 

We have chosen staggered grids because of the inherent stability of the pressure approxima- 
t i ~ n . ~  Furthermore, the time-accurate pressure-correction method as introduced by Chorin* is 
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used. To avoid possible instabilities in the pressure discretization, contravariant velocity un- 
knowns are used instead of Cartesian velocity unknowns. As a consequence, the formulation 
contains Christoffel symbols, which may give rise to inaccuracies on non-smooth grids. 

In Section 2 we recall some basic facts about the tensor formulation of the Navier-Stokes 
equations. In Section 3 the discretization of the incompressible Navier-Stokes equations in 
general co-ordinates by finite volume discretization is treated. It is shown that one should use 
fluxes through cell faces as unknowns rather than the contravariant velocity components. 
Furthermore, the satisfaction of a geometrical identity in discrete sense is essential for the success 
of the discretization. Section 4 is devoted to the treatment of the boundary conditions. Although 
this treatment does not get much attention in the literature, a correct implementation is crucial 
for the final solution. The time-accurate pressure-correction method in combination with linear 
solvers is the subject of Section 5.  We use fully implicit linear solvers of conjugate gradient type. 
Numerical experiments show that these methods are quite suitable for solving the discrete 
equations. Finally, in Section 6 we present some test examples. It is demonstrated that, even for a 
very irregular grid, satisfactory results may be expected, and that the presence of Christoffel 
symbols does not lead to undue inaccuracies. 

2. TENSOR FORMULATION O F  THE NAVIER-STOKES EQUATIONS 

In order to be able to deal with flow problems in domains of irregular geometry it is necessary to 
use grids that follow the boundaries accurately. We have decided to use finite volume techniques 
in combination with boundary-fitted co-ordinates. This means that the boundaries of the solution 
domain coincide with the grid lines. The physical domain is mapped onto a computational 
domain consisting of a number of rectangular blocks. Here we restrict ourselves to the one-block 
case, and to two dimensions. 

The mapping T :  x+{ from an arbitrary domain R in the x-plane to a rectangle G in the {-plane 
is assumed to be regular, which means that the Jacobian of the transformation is definite. In G a 
uniform computational grid is chosen. We assume that the only information about the mapping is 
the relation x = x({) in the grid points. The co-ordinates x are Cartesian. 

A right-handed system of base vectors is assumed. To formulate the Navier-Stokes equations 
in curvilinear co-ordinates, tensor notation is of great help. Therefore, we recall some basic facts 
of tensor analysis. For an introduction to tensor analysis we refer to References 22-24. We 
introduce the covariant base vectors a(") as 

so that a(") is tangent to the co-ordinate lines t;B=constant, PZa,  and the contravariant base 
vectors a(") as 

so that a(") is normal to the co-ordinate lines <"=constant. 
The covariant and contravariant metric tensors gUB and g'B are defined by 

(3) 
Let g =det(gUp), then J(g) equals the Jacobian of the transformation, J =det(dx/a{). 

A covariant derivative is a tensor which reduces to a partial derivative of a vector field in 
Cartesian co-ordinates. For an absolute scalar, the covariant derivative is the same as the partial 

g"B = a("). a(@). SUB = a(") - a(B), 
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derivative, and is denoted by 

The covariant derivative of a contravariant tensor of rank one LI" is given by 

where { y"s} is the so-called Christoffel symbol of the second kind, defined by 

Furthermore, it can be shown that for a covariant derivative of a contravariant tensor of rank two 
TUB the following relation holds: 

The incompressible Navier-Stokes equations in general co-ordinates are given by 

up, = 0, (8) 

where t a b  represents the deviatoric stress tensor 

t a p  = c((g"7 ulp, + g'B UfJ,  (10) 

with p the viscosity, p the pressure, U a  the contravariant velocity component and p the density of 
the fluid. The contravariant velocity components and the Cartesian components are related by 

u =  U"a(",. (1 1) 

An important relation is the so-called geometric identity 

$r u r )  dT, = 0 (12) 

for any physical volume R with surface r. Equation (12) can be derived by applying the 
divergence theorem in general co-ordinates to an arbitrary constant velocity field. 

3. INVARIANT FINITE VOLUME DISCRETIZATION 

Although invariant formulations are very attractive from a mathematical point of view, discretiz- 
ations based on such a formulation seem complicated and costly, especially on staggered grids. 
For that reason many authors avoid completely invariant discretizations, for example, by using 
Cartesian velocity components. Rosenfeld et dz5 have successfully discretized the incompressible 
Navier-Stokes equations in general co-ordinates, using Gibbs' notation. In this formulation 
Christoffel symbols do not occur explicitly. In our paper we follow a different approach, using 
tensor notation with explicit occurrence of Christoffel symbols but, as a consequence, obtaining 
smaller molecules. We shall show that such a discretization gives very satisfactory results if some 
precautions are taken. 



414 A. SEGAL ET AL. 

x-plane 

Figure 1. Staggered curvilinear grid (discretized) 

Figure 2. Numbering of points in a cell 

In order to avoid possible pressure oscillations we use a staggered grid (Figure 1). The pressure 
is computed in the cell centres and the contravariant velocity components are used as unknowns 
at the centres of the cell faces. We number the nodes as indicated in Figure 2. The geometrical 
coefficients are computed by central differences and linear interpolation. From (1) it is clear that 
we can easily compute the following midside components of a(a): 

a:2)( i k 1/2, j )  z (13) 
6X" 6X" 

u:')( i, j & 1 /2) = - ( i ,  j f 1/2), ( i  f 1/2, j ) ,  X' R 
where 6x"(i,  j _ +  1/2) and S ( ' ( i ,  j &  1/2) are the increments of xu and (' in the positive ('-direction 
along the face with centre (i, j +  1/2), and similarly for ( i f  1/2, j ) .  

From (13) one can approximate the value of a(") in the centres of the cell and between 
neighbouring cells the lacking components at the centres of the cell faces by linear interpolation. 
The base vectors a(") are computed from a(") - a(,,) = 6; and, so, metric tensors follow from (3). The 
Christoffel symbols contain second derivatives of the mapping (6) and, hence, are most sensitive to 
errors. Among the various possibilities we have found that a straightforward discretization of the 
first part of (6) gave the most satisfactory results. In the sequel we assume, without loss of 
generality, that the transformation is defined such that 6(' = St' = 1 for each cell. 
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In order to obtain accurate discretizations the following requirements should be met: 

1. The geometric identity (12) should be exactly satisfied after discretization for all cells. 
2. When representing a constant vector field u on the staggered grid in terms of its contra- 

variant components U", and recomputing u from U", the original vector field u should be 
recovered exactly. 

The first requirement is satisfied with our method of computation of the geometric quantities. The 
second requirement is less easily satisfied. Figure 3 shows a non-orthogonal grid in an L-shaped 
domain. Figure 4 shows a constant vector field and the same vetor field after transforming to the 
above staggered contravariant components in the cell-face centres and retransforming to Car- 
tesian components in the cell vertices in an obvious way. Clearly, the non-uniformity in the grid 
produces large errors locally. 

Figure 3. Grid for the L-shaped region 

Figure 4. Constant velocity field before and after transformation operations 
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If we use V" = J(g) U" as unknown, as proposed in Reference 25, and if we define J(g) in the 
vertices of the cells by 

where C1 denotes summation over the grid points i +  1/2,j and i+ 1/2, j +  1 and C2 summation 
over the grid points i , j+ 1/2 and i+ l , j +  1/2, then it is a straightforward exercise to show that the 
transformation u+ V"-w gives exactly v = u if u is a constant vector. For this reason we shall use 
V" as unknowns. 

Next we consider the finite volume discretization of the continuity equation (7) and the 
momentum equations (9). Integration of the continuity equation over a cell with centre ( i , j )  and 
applying the Gauss divergence theorem gives 

r r 

In compact notation (9) may be written as 

T ~ $ = F " ,  

with 
TUB = p u" UB + g"Bp - T"B 

and 

(18) 
a 
at 

F" = pf" -- ( pU"). 

Integration of (16) over a U'-cell (see Figure 5) with centre ( i +  1/2,j) and application of (7) gives 
(u= 1) 

and a similar expression for a Uz-cell may be derived. 

U' points 
U2 points 
scalar points 
scalar control volume 

U' control volume 

u2 control volume 

( plane 

Figure 5. Arrangement of the unknowns for staggered grid 
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0- V1 unknown n + n + n  

0 0 1 - V 2  unknown 

+ -punknown n + - + n  

Figure 6. Stencil for momentum equations (V'-cell) 

The actual discretization may be derived by substituting (17) and (18) into (19) and substituting 
V" = U"/J(g) .  The stencil corresponding to the V' molecule has been sketched in Figure 6; the V 2  
stencil is obtained by rotation over 90". In fact we have only a 19-point stencil (6 for pressure 
points, 13 for velocity points), which seems to be the absolute minimum for general co-ordinates 
in 2D. 

4. TREATMENT OF THE BOUNDARY CONDITIONS 

In the literature little information is given about boundary conditions in general co-ordinates. In 
this section we shall give an outline of how to treat several types of boundary conditions. We shall 
consider the following types of boundary conditions: 

1. velocity prescribed 
2. normal and tangential stresses prescribed 
3. normal stress and tangential velocity given. 

For ease of notation we shall restrict ourselves to a boundary part t2 =constant; the case 
5' =constant follows easily. 

4.1 Prescribed velocities 

In many practical problems the normal and tangential velocity components u * n and u - t are 
prescribed. To find the contravariant velocity components U", a transformation is necessary. 
Using tensor analysis one can show that for a boundary t2 =constant, the following relations 
hold: 

U z  = J(g2' )u * n, (20) 

Since the U2-velocity component is situated at the boundary, no special treatment is necessary for 
this unknown. The U'-component is present as virtual unknown, which may be eliminated by 
linear extrapolation from inner unknowns and the boundary value. Also the virtual pressure may 
be eliminated by linear extrapolation. 

4.2. Normal and tangential stresses prescribed 

Boundary conditions of the type normal and tangential stresses prescribed are sometimes used 
as outflow boundary conditions (see, for example, Reference 26), but may also be necessary for 
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multiblock methods on block boundaries. If we define S"" and S"' as the physical normal and 
tangential stress components then these boundary conditions are 

S"" and S"' given. (22) 
At the boundary t2 =constant 0 2 1  and 022 may be expressed in these quantities by the following 
transformation formulae: 

022- 22 22  -9 s 9 

o12 = (J(92291 1 IS2' -921 022)/91 1 3  

where oaP is defined by 
0'8 = - g"Bp + Tap. (25) 

Since no velocity components are prescribed we need a control volume for all the unknowns, 
including the normal components lying at the boundary. The differential equation is only valid 
inside the domain; so, at the boundary we use half cell for the U2-momentum equation. Figure 7 
shows the grid at a lower boundary. From this figure it is clear that only the cells adjoining the 
boundary have a stencil extending outside the domain. For the shaded 'tangential' velocity cell in 
Figure 7 we distinguish between the contributions of the convection terms and those of the stress 
tensor. The convection term introduces virtual V'-unknowns, as is clear from the figure. These 
unknowns may be eliminated by linear extrapolation. 

With respect to the stress tensor we use formula (19) with T'P replaced by o'#; hence, 

{ } atf+ 1/2. j+ 112)- (26) 12 (i+ 112 j +  1/21 

Y B  
jn o:jdQzt:J(g)o" Ili;:*j)+J(g>o ~(i+ 1/21 j- 1/2)+ 

The term o12(i+ 1/2, j- 1/2) may be replaced by the given boundary condition (24), the other 
terms are evaluated in the usual way with virtual velocities eliminated by linear extrapolation. 

The 'half' cell for the U2-momentum equation adjoining the boundary is sketched in Figure 8. 
If we integrate (17) over the half cell we obtain 

A second-order accurate evaluation of (27) introduces extra points in the stencil and for that 
reason we make the following assumption: the natural boundary conditions S"' and S"" given, will 

+ 

0 ~ 0  

Figure 7. Grid at a 'lower' boundary in the computational domain. The last complete cell adjoining the boundary has 
been shaded 

/ /  



INVARIANT DISCRETIZATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 419 

+ 
U /// 
n 

Figure 8. Half cell (shaded) adjoining 'lower' boundary in the computational grid 

only be applied at the outflow boundaries, where the flow does not change much. This restriction 
allows us to evaluate integrals in (27) up to O(h),  instead of the usual O ( h 2 )  approximation. 
Hence, (27) may be approximated by 

with ( i ,  j- 1/2) the position of the Y2-unknown in the cell. 

elimination of virtual velocities by linear extrapolation. 
The contribution of the convection term is found by the substitution T"@=pU"UB and 

Setting TUB=oaB in (28) we get 

The terms ol ' ( i -  1/2, j- 1/2), P ( i -  1/2, j -  1/2), a"(i, j- 1/2) and aZ2(i-  1/2, j- 1/2) are given 
by (23) and (24). The other terms contribute to the stencil in the usual way. The only extra 
problem is caused by the term 

which requires the evaluation of g12aU1/d r2  at the boundary. Since, for fixed i, only one U1- 
unknown is present in the part of the stencil in the inner region, straightforward O ( h 2 )  
approximation is not possible without enlarging the stencil. However, because we have already 
restricted ourselves to O(h)  approximation, approximate U1(i ,  j- 1) by U 1 ( i ,  j) which, in fact, 
means that we define 

aul 
--TxO at the boundary. 
a t  

The error due to this assumption is small if U1 does not change much in the direction of r 2  or if 
g12 is small, which implies that the outstream boundary is nearly straight. Other types of 
approximation are much more complicated and we expect that they do not give much more 
accuracy, under the circumstances assumed above. 

4.3. Normal stress and tangential velocity prescribed 

An alternative (commonly used) outflow condition is 

u t and S"" given. 
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Unfortunately, in general u -  t prescribed at a boundary 5' =constant does not give U', because of 
the relation (21). Of course, if the grid is orthogonal at the outflow boundary, g l 2 = 0  and (21) 
reduces to U' given. In a general grid we must either use (21) or we must use the boundary 
condition U' given. In general, the outflow boundary is artificial, and it is likely that the 
boundary condition U' given is as good or as bad as u -  t prescribed. For that reason we restrict 
ourselves to the case U' prescribed instead of u-t .  With respect to the normal velocities we 
introduce half cells in the same way as before. The complete cell adjoining the boundary does not 
introduce any extra complications, except that virtual velocities and pressures must be eliminated 
by extrapolation. With respect to the half cell adjoining the boundary, we make again the O ( h )  
accuracy assumption which introduces (28). No further requirements are needed because the 
tangential velocity component is known at the boundary. 

5. TIME DISCRETIZATION AND PRESSURE-CORRECTION METHOD 

To solve the discrete equations (19) we use a standard time-accurate pressure-correction method 
as introduced by Chorin." In our work we use the second-order accurate implementation 
described by Van Kan.27 The spatial discretization described before results in a system of 
ordinary differential equations that may formally be written as 

V,=g(t), 
where R denotes the diagonal matrix containing pi as the ith diagonal element, VM represents all 
non-prescribed fluxes ( V= J(g) U), P represents the pressure unknowns, f represents the viscous 
stress as well as the convective terms and the volume forces, G represents the discretization of the 
gradient and D =(D,, DB) represents the divergence operator. The velocity unknowns V, are the 
ones that are prescribed at the boundary. 

We use the so-called 0-method for the discretization of the time-derivatives. Application of the 
0-method to (31) gives 

=Of(VL+', V;")+(l -e)f(VL, V;)+8GPn+1 + ( 1  -O)GPn, (32) 

where n denotes the preceding time-level and n + 1 the new time-level. In the pressure-correction 
method (32) and (33) are replaced by 

-er(vg, v,*)+(i  -e)r(vL, v;)+GP~, (35) 

(36) 

v *  vn 
At 

R M- M- 

v,* = g n +  1 = vn + 1 
B .  

Subtracting (35) from (32) gives 

Van Kan27 shows that the term 0(f(VL+', V;+')-f(Vpfi, V:)) may be neglected, without affect- 
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ing the order of accuracy. Hence, (37) is reduced to 

Applying the discrete divergence operator D ,  to (38) gives 

D , v k + : : ' - ~  V* 
At 

= OD,R - G(P"+ - P"), 

and because of (36) and (34), this may be written as 

DV -D,V,*-D V" 
--= = BD,R - G(P"+ - P"). 

At At 

(39) 

From equation (40) P"+ - P" may be computed, and after that Vk+' results from (38). One easily 
verifies that the matrix DMR - G corresponds to a nine-point molecule. Unfortunately the 
pressure matrix in (40) is non-symmetric for a non-orthogonal grid. 

Equation (40) completely defines the pressure (up to a constant in the case of Dirichlet 
boundary conditions for the velocity), and no artificial pressure boundary condition is needed. 
The system of equations (40) is solved by a GMRES solver,28 a projection type solver for non- 
symmetric matrices. To solve the non-linear system of equations (37) we use a Newton- 
linearization combined with the same GMRES solver. 

6. SOME TEST RESULTS 

To test the developed code we have run a number of test examples. The first problem is that of a 
90" bend. Figure 9 shows the grid for the bend problem. 

At the transition from curved to straight boundary the grid is non-orthogonal. Figure 10 shows 
the streamlines for this problem at Re = 500 if we take U"-unknowns. The outstream condition is 
tangential velocity zero and normal stress zero. At the instream a parabolic velocity profile is 

Figure 9. Mesh for 90" bend problem. Number of cells: 16 x 64 
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Figure 10. Streamlines for 90" bend problem at Re=5OO. U"-velocity unknowns 

Figure 11.  Streamlines for 90" bend problem at Re=500. V"-velocity unknowns 

prescribed. Clearly in the neighbourhood of the outflow the streamlines show significant wiggles. 
The wiggles disappear if we use the Y" (flux)-unknowns (Figure 11). 

More dramatic is the difference between the U"- and V"-unknowns for the L-shape domain of 
Figure 3. Figure 12 shows the velocity field with the U"-unknowns for small Reynolds number 
(Re= 10). The same field with V"-unknowns is given in Figure 13. The 'jump' in the grid at the 
bend (see Figure 3) introduces an unphysical recirculation region for the U"-unknowns, which has 
disappeared completely with the V"-unknowns. Finally, in Figures 14-16 we show the velocities, 
streamlines and isobars for a 180" bend at Re = 500, and in Figures 17 and 18 the streamlines and 
isobars for a skewed cavity at an angle of 63" and Reynolds number 1OOO. This last problem has 
been solved with a very fine grid (128 x 128). 



INVARIANT DISCRETIZATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 423 

Figure 12. Velocity field in L-shaped region, Re= 10. U"-unknowns 

Figure 13. Velocity field for L-shaped region at Re = 10. V"-unknowns 

Figure 14. Velocity field in a 180" bend, Re=500 
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Figure 15. Streamlines in a 180" bend, Re=500  

Figure 16. Isobars in a 180" bend, Re = 500 

Figure 17. Streamlines for skewed cavity, Re= 1O00, 128 x 128 grid 

7. CONCLUSIONS AND FUTURE DEVELOPMENTS 

The test examples shown in Section 6 indicate that our code is a reliable solver for the 2D 
incompressible Navier-Stokes equations on a curvilinear (non-orthogonal) grid. It has been 
demonstrated that the fluxes at cell boundaries (,/(g)U") should be used as unknowns instead of 
contravariant velocity unknowns U". The presence of Christoffel symbols in the formulae does 
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Figure 18. Isobars for skewed cavity, Re= 1o00, 128 x 128 grid. 

not allow us to use non-smooth co-ordinate mappings. Numerical experiments show that 
accurate results can be reached, provided the grid is fairly smooth. At this moment we are 
extending our code with a turbulence model (k-c). Furthermore, we are investigating how the 
code may be improved in order that large differences in grid size (non-smooth co-ordinate 
mappings) can be handled accurately. Finally, the extension to 3D is under preparation. 
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